Real Quadratic Number Fields

نویسندگان

  • EDWARD B. BURGER
  • Alfred J van der Poorten
  • Edward B. Burger
  • Alfred J. van der Poorten
چکیده

a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · ( ah 1 1 0 ) = ( ph ph−1 qh qh−1 ) ←→ [ a0 , a1 , . . . , ah ] = ph/qh

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

The Gauss Class-Number Problems

In Articles 303 and 304 of his 1801 Disquisitiones Arithmeticae [Gau86], Gauss put forward several conjectures that continue to occupy us to this day. Gauss stated his conjectures in the language of binary quadratic forms (of even discriminant only, a complication that was later dispensed with). Since Dedekind’s time, these conjectures have been phrased in the language of quadratic fields. This...

متن کامل

Class Numbers of Quadratic Fields Determined by Solvability of Diophantine Equations

In the literature there has been considerable attention given to the exploration of relationships between certain diophantine equations and class numbers of quadratic fields. In this paper we provide criteria for the insolvability of certain diophantine equations. This result is then used to determine when related real quadratic fields have class number bigger than 1. Moreover, based on criteri...

متن کامل

On the computation of Hermite-Humbert constants for real quadratic number fields

We present algorithms for the computation of extreme binary Humbert forms in real quadratic number fields. With these algorithms we are able to compute extreme Humbert forms for the number fields Q( √ 13) and Q( √ 17). Finally we compute the Hermite-Humbert constant for the number field Q( √ 13).

متن کامل

Cryptography in Real Quadratic Congruence Function Fields

The Diffie-Hellman key exchange protocol as well as the ElGamal signature scheme are based on exponentiation modulo p for some prime p. Thus the security of these schemes is strongly tied to the difficulty of computing discrete logarithms in the finite field Fp. The Diffie-Hellman protocol has been generalized to other finite groups arising in number theory, and even to the sets of reduced prin...

متن کامل

Real Quadratic Fields with Abelian 2-class Field Tower

We determine all real quadratic number fields with 2-class field tower of length at most 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001